

Formation and Catalytic Properties of Edge-Bonded Molybdenum Sulfide Catalysts on TiO₂

Yasuhiro Araki,* Kosaku Honna,* and Hiromichi Shimada†,1

*Tsukuba Branch of Advanced Catalysts Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; and †National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan

Received October 19, 2001; revised December 28, 2001; accepted December 28, 2001

The effect of preparation conditions (calcination atmosphere, sulfidation atmosphere, and sulfidation temperature) on the orientation of MoS₂ clusters on TiO₂ supports was studied. Edge-bonded MoS₂ clusters formed when the catalyst was sulfided in a flow of H₂S/N₂ at 573 or 673 K. However, when sulfided in H₂S/N₂ at higher temperatures than 773 K, the edge-bonded MoS₂ clusters transformed to highly aggregated basal-bonded MoS2 clusters. Catalytic activity tests, using hydrogenation of 1-methylnaphthalene as a model test reaction, revealed that the turnover frequency on the catalyst with edge-bonded MoS2 clusters prepared by sulfiding at 573 K in H₂S/N₂ was higher than that on the catalyst with basal-bonded MoS₂ clusters prepared by sulfiding in H₂S/H₂. © 2002 Elsevier Science (USA)

Key Words: hydrodesulfurization (HDS) catalysts; catalyst dispersion; morphology; orientation.

INTRODUCTION

Alumina-supported Mo sulfide catalysts with Co or Ni as promoter are widely called hydrodesulfurization (HDS) catalysts and have long been used for hydrotreatment of petroleum fractions. Within the past decade, the catalytic performance of HDS catalysts has been significantly improved to satisfy a wide range of requirements. The most recent requirement is to drastically reduce the sulfur level in diesel fuels, to at least below 30 ppm, to meet more stringent environmental regulations that will be introduced in the near future. Such reduction in sulfur (deep desulfurization) requires that next-generation HDS catalysts possess the ability to remove sulfur from hard-to-desulfurize compounds such as 4,6-dimethyldibenzothiophene (1–3). This ability requires the development of HDS catalysts that have full dispersion of highly active catalytic sites. In addition, high hydrogenation activity as well as high HDS activity are required for such deep desulfurization catalysts to eliminate the steric hindrance that lowers the reactivity of the above hard-to-desulfurize compounds.

¹ To whom correspondence should be addressed. Fax: +81-298-61-2371. E-mail: h-shimada@aist.go.jp.

In the late 1980s, Topsøe et al. (4) proposed that the active catalytic sites of Co- or Ni-promoted Mo sulfide catalysts are located on the so-called "Co (Ni)-Mo-S" structure, in which Co (Ni) atoms are bonded to the edges of MoS₂ crystallites. Later, Topsøe et al. (5) suggested that there are different types of "Co-Mo-S" structures and that only some of these Co-Mo-S structures function as highly active catalytic sites in industrial catalysts. Therefore, the Co-Mo-S structures on the support must be clarified in detail and the catalytic activities of those structures must be determined.

Numerous studies indicate that the catalytic activity of Co-Mo-S structures depends on the morphology of the MoS_2 clusters on the support, because the layered MoS_2 structure is highly anisotropic. Candia et al. (6) claimed that there are at least two types of Co-Mo-S structures: one called "Co-Mo-S(I)," which has relatively strong interaction with the support and is less catalytically active than the other structure, called "Co-Mo-S(II)," which has weak interaction with the support (7–12). Single-layered MoS₂ clusters with Co at their edges probably are Co–Mo– S(I), whereas multilayered MoS₂ clusters with Co, except on the bottom layer, are Co-Mo-S(II). Whitehurst et al. (13) suggested that, due to steric hindrance, the bottom layers of Co–Mo–S structures that have multilayers might be less active than the other layers. Vrinat et al. (14) reported that in Mo sulfide catalysts without Co promoters, only the topmost layers of MoS₂ clusters on the support are catalytically active in the HDS reaction of thiophene. Furthermore, Daage et al. (15) claimed that all the edge planes of MoS₂ clusters possess HDS activity, whereas due to steric hindrance, only the "rim," i.e., the top and bottom edges, of unsupported MoS₂ clusters possess hydrogenation activity. These three studies indicate that the morphology of MoS₂ clusters, in particular the aspect ratio of the layered structure (i.e., lateral dimension/thickness), significantly affects the catalytic performance, irrespective of the presence or absence of Co- or Ni-promoters.

Based on the above discussion, the catalytic performance of Co-Mo-S structures depends also on the orientation of the MoS₂ clusters on the support, because the upper edge sites of the "edge-bonded" MoS2 clusters that are

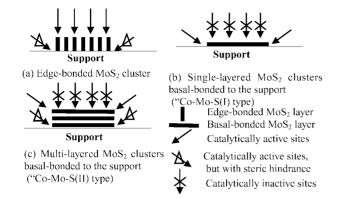


FIG. 1. Schematic of the orientation of MoS₂ clusters on supports.

perpendicular to the support surface (Fig. 1a) have weaker electronic interaction with the support than do single-layered MoS_2 clusters that are "basal-bonded" (parallel) to the support (Fig. 1b). In addition, the upper edge sites of the edge-bonded MoS_2 clusters have less steric hindrance than do either the edge sites of the basal-bonded single-layered MoS_2 clusters (Fig. 1b) or the edge sites of the bottom layers of the basal-bonded multilayered MoS_2 clusters (Fig. 1c).

Until recently, no clear evidence was reported for such edge-bonded MoS₂ clusters on γ -Al₂O₃, although there were some discussion about the edge-bonded MoS₂ clusters based on transmission electron microscopy (TEM) pictures (16–18). In 1999, using γ -Al₂O₃ single crystals with different indices, Sakashita and Yoneda (19) showed that there is an epitaxial relationship between the orientation of MoS₂ clusters and the surface structures of γ -Al₂O₃; namely, when the spacing of MoS₂ layers is identical to the lattice distance of a surface plane of an γ -Al₂O₃ crystal, MoS₂ clusters are edge-bonded to the surface. As a result, edge-bonded clusters form on (100) γ -Al₂O₃, whereas basal-bonded MoS₂ clusters form on other planes, such as (111) and (110), or on amorphous planes of γ -Al₂O₃. In a subsequent study, Sakashita et al. (20) confirmed an epitaxial relationship for the orientation of MoS₂ clusters on anatase-type TiO₂ powders; namely, edge-bonded MoS₂ clusters form on the spherical anatase powders that mainly expose the (001) plane.

In our current study, we determined the preparation conditions (calcination atmosphere, sulfidation atmosphere, and sulfidation temperature) that enhance the formation of edge-bonded MoS₂ clusters on an anatase-type TiO₂ support. First, we clarified the effects of calcination, either in nitrogen or dry air, and the sulfidation conditions, using either H₂S/N₂ or H₂S/H₂ at temperatures ranging from 573 to 873 K, on the orientation of MoS₂ clusters on the support. Then, we compared the catalytic activities of these prepared MoS₂-supported catalysts using a model test reaction. We chose the hydrogenation of 1-methylnaphthalene (1-MN) as a model test reaction, because more prominent effects of edge-bonded clusters are expected in the hydrogenation

of aromatic rings, in which the effect of steric hindrance is larger than in the HDS reactions. Finally, we clarified the characteristics of the edge-bonded and basal-bonded MoS₂ clusters needed in the design of highly active catalytic sites.

EXPERIMENTAL

Catalyst Preparation

The TiO_2 support used here was ultrafine anatase-type particles (Nanophase Technologies Ltd.) with an average particle diameter of 30 nm, a BET surface area of $50 \text{ m}^2/\text{g}$, and a purity of 99.95%. The Mo sulfide catalysts were prepared by using an equilibrium adsorption method (21, 22). In the equilibrium adsorption, 10 g of the TiO_2 powder was mixed with 400 cm³ of an aqueous solution of (NH₄)₆Mo₇O₂₄ (0.007 M) and kept at 323 K for 24 h. The pH of the solution was kept constant at 2.0 by adding HNO₃. The pH value of 2.0 for equilibrium adsorption was chosen to achieve high loading of molybdate on the TiO_2 support but to not exceed too much that of the monolayer coverage.

After filtration and rinsing with pure water, the solid was dried in air at 298 K for 16 h and then at 323 K for 3 h. The calcination was done at 723 K for 3 h in a flow of either nitrogen or dry air to clarify the effect of the inert-gas atmosphere that was used in the previous study (20) on the morphology and orientation of MoS₂ clusters on the support. Sulfidation of the resulting calcined catalysts was done for 2 h at various temperatures, ranging from 573 to 873 K, in a flow of either 5% H₂S/H₂ or 5% H₂S/N₂. Induced coupled plasma emission spectrometry analysis indicated that the Mo loading was 4.6 wt% as metal.

Catalyst Characterization

Observation of the catalysts after sulfidation was carried out using transmission electron microscopy (TEM) with a Hitachi H-800 operated at an accelerated voltage of 200 kV. Each catalyst sample was ground into powder (by using a mortar and a pestle) and then ultrasonically dispersed on a copper grid with holey carbon films in *n*-heptane.

X-ray photoelectron spectroscopy (XPS) spectra were obtained by using a PHI 5500 photoelectron spectrometer with monochromatic Al $K\alpha$ excitation (1486.6 eV, 150 W). The energy scale of the spectrometer was calibrated using the Au $4f_{5/2}$ (84.0 eV) line of a pure Au plate and the Cu $2p_{3/2}$ (932.4 eV) line of a sputtered Cu plate. All peak energies were corrected using the C 1s line of the adventitious carbon at 285.0 eV. As a reference for the assignment of S 2p lines, amorphous MoS₃ was prepared by thermal decomposition of ammonium-tetrathiomolybdate at 523 K for 1 h in a flow of N₂ according to a method in the literature (23, 24).

The dispersion of MoS_2 on the support was measured by using a NO chemisorption method. After being sulfided in a stream of either 5% H_2S/H_2 or 5% H_2S/N_2 , about 0.2 g of the catalyst was treated with a flow of H_2 for 1 h at 603 K. Then, 10% NO/He pulses, each having a volume of 2.1 cm³, were introduced to the catalyst at 303 K. The amount of NO at the exit of the reactor was monitored using a thermal conductivity detector so that saturation of the adsorption of NO on the catalyst could be detected.

Catalytic Activity Test

Catalytic activity was evaluated by using hydrogenation of 1-MN as a model test reaction. Before use, 1-MN was purified by column chromatography to remove N- and Scontaining compounds in the reagent. The reactions were carried out at 603 K for 1 h in a microautoclave (inner volume of 35 cm³) containing 10 cm³ of the feed (25 wt% 1-MN with the balance being tetradecane) and hydrogen with an initial pressure of 6 MPa at 298 K. The feed and product were analyzed by using gas chromatography with a HP Ultra #1 capillary column. The reaction rate constants were calculated using the conversion data obtained for different amounts of the catalyst, ranging from 0.05 to 0.5 g, and assuming a pseudo-first-order kinetics. To apply this assumption, the reaction conditions were determined so that the total conversion would not exceed 20%. Under these conditions, decreases in the hydrogen partial pressure during the reactions were negligible. The products obtained were only 1- and 5-methyltetralin.

RESULTS AND DISCUSSION

Catalyst Characterization

Figure 2 shows representative TEM images of Mo/TiO₂ catalysts sulfided in H₂S/H₂ at 573, 673, or 773 K after calcination in air. The catalysts sulfided at 573 and 673 K (Figs. 2a and 2b) had small numbers of MoS₂ clusters as a monolayer or as two layers (indicated by arrows in Fig. 2a). All of the layers were parallel to the surface of TiO₂, indicating basalbonding on the support. Because the Mo loading was 4.6% (see Section Catalyst Preparation above), the major part of the Mo species was not detected in these images. This can be attributed either to high dispersion of MoS₂ clusters that contain fewer than seven Mo atoms per layer (25) or to insufficient sulfidation, particularly in the catalysts sulfided at 573 K. The catalyst sulfided at 773 K (Fig. 2c) had many MoS₂ clusters with multilayered structures (indicated by an arrow), indicating that aggregation and stacking of MoS₂ layers was proceeded by higher-temperature sulfidation. Note that Mo loading of 4.6% as metal corresponds to 5.8 Mo atom/nm² that is slightly higher than that for monolayer coverage (5.0 Mo atom/nm²) but not so high that it forms crystalline species at the oxide stage, as described in a previous paper (22).

Figure 3 shows representative TEM images of Mo/TiO₂ catalysts sulfided in H₂S/N₂ at 573, 673, or 773 K after calcination in air. The catalyst sulfided at 573 K (Fig. 3a) had many edge-bonded MoS₂ clusters that were less than 2 nm long (indicated by a circle) but had no basal-bonded MoS₂ clusters. The number of Mo atoms estimated from the observed MoS₂ clusters in Fig. 3a was less than that expected from the Mo loading of 4.6%. This indicates high dispersion of MoS₂ clusters or insufficient sulfidation, similar to the results for the catalyst sulfided in H_2S/H_2 . The catalyst sulfided at 673 K (Fig. 3b) had a relatively large number of edge-bonded MoS₂ clusters (indicated by a circle), resulting from the growth of small MoS₂ clusters that were not detected in the image, and a small number of basal-bonded MoS₂ clusters (indicated by a dotted circle). The catalyst sulfided at 773 K (Fig. 3c) mostly had large (>5 nm), multilayered basal-bonded MoS₂ clusters on the support (indicated by a dotted circle) but had relatively few edge-bonded MoS₂ clusters.

Figure 4 shows representative TEM images of Mo/TiO₂ catalysts sulfided in either H_2S/H_2 or H_2S/N_2 after calcination in N_2 . The catalyst sulfided at 573 K in H_2S/N_2 (Fig. 4a) had edge-bonded MoS₂ clusters whose lengths were longer than those for the catalyst calcined in air (Fig. 3a). Comparison of the images of the catalysts calcined in N_2 with those of the corresponding catalysts calcined in air reveals the same trends; namely, the calcination atmosphere did not affect the orientation of the MoS₂ clusters, whereas the average length of the MoS₂ clusters was longer when the catalysts were calcined in N_2 .

The TiO₂ support used in the present study was spherical with a *nonporous* structure. The TEM image presenting a whole particle, as shown in Figs. 2–4, gives the complete image of catalyst particles. Thus, we conclude that these TEM images are representative of the MoS₂ structures in the catalysts.

Table 1 summarizes the above TEM observation results, showing that the orientation of MoS_2 clusters on the support depended on the sulfidation conditions. Sulfidation of the catalyst in H_2S/N_2 enhanced the formation of edgebonded MoS_2 clusters; however, these clusters changed their orientation to basal-bonded when sulfided at a temperature higher than 673 K. Sulfidation of the catalyst in H_2S/H_2 resulted in highly dispersed basal-bonded MoS_2 clusters. Increasing the sulfidation temperature in H_2S/H_2 caused aggregation of MoS_2 clusters, but less than the aggregation caused when the catalysts were sulfided in H_2S/N_2 .

Figure 5 shows the effect of sulfidation conditions on the Mo 3d XPS spectra of MoS_2/TiO_2 catalysts calcined in air. As reported in numerous studies (26–30), when the degree of sulfidation was increased, two features, at 232.5 and 235.5 eV, which are assigned to Mo^{6+} features (Mo $3d_{5/2}$ and Mo $3d_{3/2}$) from oxide species, shifted to 228.5 and 232.0 eV, which are assigned to Mo^{4+} features from sulfide species. Simultaneously, S 2s features appeared at 226.0 eV.

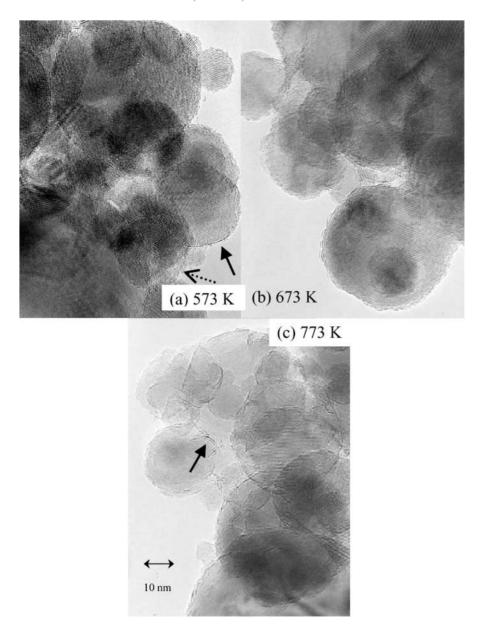


FIG. 2. Transmission electron microscopy (TEM) images of MoS_2/TiO_2 catalysts calcined in air and then sulfided in H_2S/H_2 at (a) 573 K (solid arrow indicates monolayered MoS_2 cluster and dotted arrow indicates two-layered MoS_2 cluster), (b) 673 K, and (c) 773 K (solid arrow indicates multilayered MoS_2 cluster). (×1,000,000.)

Asymmetric features observed in the spectra of the catalysts sulfided at low temperatures, typically those observed for the catalyst sulfided in H_2S/H_2 at 573 K (Fig. 5b), indicate the presence of Mo^{5+} species, likely oxisulfide, in the transition stage from Mo^{6+} to Mo^{4+} , as described in previous papers (28–30). In the Mo 3d spectra of MoS_2/TiO_2 catalysts calcined in N_2 (not shown here), changes similar to those of the MoS_2/TiO_2 catalysts calcined in air (Fig. 5) were observed, although the line widths of the features for the catalysts calcined in N_2 were slightly larger.

To quantitatively discuss the changes in Mo species, each spectrum was deconvoluted into seven peaks assigned to Mo $3d_{5/2}^{6+}$, Mo $3d_{3/2}^{6+}$, Mo $3d_{5/2}^{5+}$, Mo $3d_{3/2}^{5+}$, Mo $3d_{3/2}^{5+}$, Mo $3d_{3/2}^{4+}$,

and S 2s. The curve fitting for each spectrum was done by using a least-squares method (included in the software package that accompanied the spectrometer, PHI 5500) with the following restrictions:

- 1. Peak area ratio of Mo $3d_{5/2}$ / Mo $3d_{3/2}$ was fixed at 3/2.
- 2. Peak energy difference between Mo $3d_{5/2}$ and Mo $3d_{3/2}$ was assumed constant.

Based on this curve fitting, the relative ratios of Mo^{6+} , Mo^{5+} , and Mo^{4+} in the MoS_2/TiO_2 catalysts calcined in air were calculated and are shown in Fig. 6. As expected from Fig. 5, sulfidation in H_2S/H_2 at 573 K yielded nearly 80%

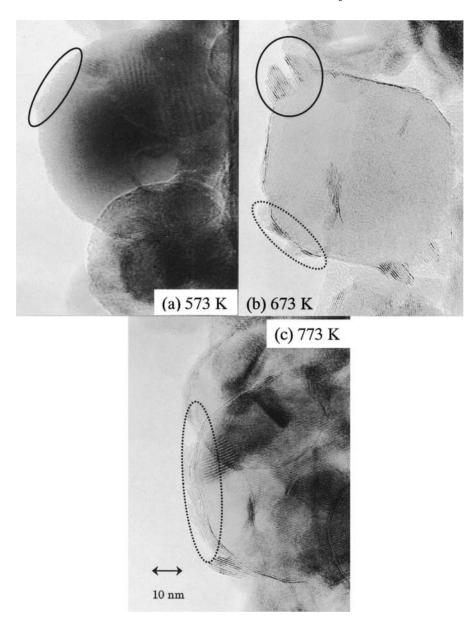


FIG. 3. Transmission electron microscopy (TEM) images of MoS_2/TiO_2 catalysts calcined in air and then sulfided in H_2S/N_2 at (a) 573 K (solid circle indicates edge-bonded MoS_2 cluster), (b) 673 K (solid circle indicates edge-bonded MoS_2 cluster and dotted circle indicates basal-bonded MoS_2 cluster), and (c) 773 K (dotted circle indicates basal-bonded MoS_2 cluster). (×1,000,000.)

 $\mathrm{Mo^{4+}}$, with the remaining assigned to $\mathrm{Mo^{5+}}$. Sulfidation of the catalyst in $\mathrm{H_2S/N_2}$ at 573 or 673 K resulted in higher ratios of $\mathrm{Mo^{4+}}$ than sulfidation in $\mathrm{H_2S/H_2}$, whereas at 773 K, the ratio remained unaffected. These results indicate that Mo oxide on $\mathrm{TiO_2}$ was sulfided more rapidly in $\mathrm{H_2S/N_2}$ than in $\mathrm{H_2S/H_2}$.

Figure 7 shows the effect of sulfidation conditions on the S 2p XPS spectra of MoS_2/TiO_2 catalysts calcined in air. The doublets with a main peak at 161.8 eV observed in the sulfided catalysts were consistent with that of pure MoS_2 . The major peak was assigned to S $2p_{3/2}$ of S^{2-} in MoS_2 , and the minor one assigned to S $2p_{1/2}$. In the spectra of the catalysts

sulfided in H_2S/H_2 (Figs. 7a–7c), changes in the S 2p spectra corresponded to changes in the Mo 3d XPS spectra; namely, sulfidation at 573 K yielded mostly MoS₂-like species and the characteristics of the spectra approached those of pure MoS₂ with increasing sulfidation temperature.

The spectrum for the catalyst sulfided in H_2S/N_2 at 573 K (Fig. 7d) showed features different from those for the catalyst sulfided in H_2S/H_2 (Figs. 7a–7c). Figure 7 also shows the spectra of amorphous MoS_3 and elemental sulfur as references. Evidently, the spectrum of the catalyst sulfided in H_2S/N_2 at 573 K corresponded to the spectrum of MoS_3 . According to previous studies (23, 31), the $S 2p_{3/2}$

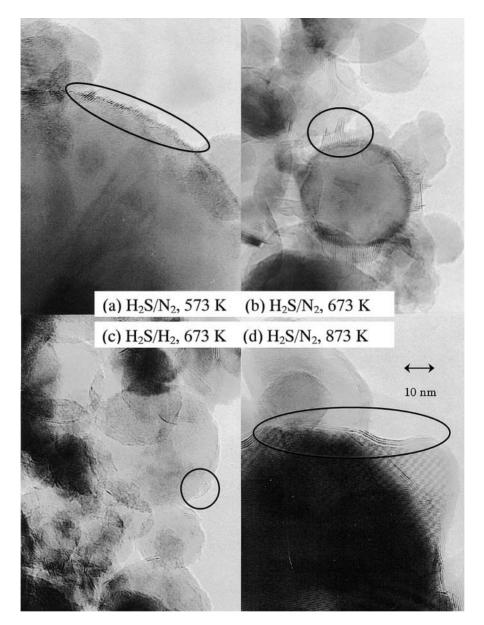


FIG. 4. Transmission electron microscopy (TEM) images of MoS_2/TiO_2 catalysts calcined in N_2 and then sulfided in (a) H_2S/N_2 at 573 K (circle indicates edge-bonded MoS_2 cluster), (b) H_2S/N_2 at 673 K (circle indicates edge-bonded MoS_2 cluster; this same image appeared in a previous paper (20)), (c) H_2S/H_2 at 673 K (circle indicates basal-bonded MoS_2 cluster), and (d) H_2S/N_2 at 873 K (circle indicates basal-bonded MoS_2 cluster). (×1,000,000.)

binding energy of bridging $S_2^{2^-}$ in MoS₃ is 162.9 ± 0.2 eV, those of terminal $S_2^{2^-}$ and $S_2^{2^-}$ in MoS₃ are 161.6 ± 0.2 eV, that of S_2^{0} in elemental sulfur is 164.0 eV, and that of bridging $S_2^{2^-}$ in MoS₂ is 161.8 eV. Based on these binding energies, the spectra in Fig. 7 were deconvoluted into the following three doublets (S $2p_{3/2}$ and S $2p_{1/2}$): S (HE) with S $2p_{3/2}$ at 164.0 ± 0.2 eV, S(ME) with S $2p_{3/2}$ at 162.9 ± 0.2 eV, and S (LE) with S $2p_{3/2}$ at 161.6 ± 0.2 eV. Thus, S (HE) is attributed to elemental sulfur, S (ME) to MoS₃, and S (LE) to MoS₂ and MoS₃. The fraction of each doublet was calculated by a curve fitting using the same procedure used

for the Mo 3d spectra (see above) except that the peak area ratio of S $2p_{3/2}$ /S $2p_{1/2}$ was fixed at 2.

Figure 8 shows the effect of sulfidation temperature on each of these fractions. The catalyst sulfided in H_2S/N_2 at 573 K contained 60% of the S (ME) assigned to bridging S_2^{2-} in MoS₃. This fraction decreased with increasing sulfidation temperature and finally disappeared at 773 K. Figure 8 indicates that sulfidation of the catalyst in H_2S/H_2 also yielded MoS₃, although the fraction was smaller than that in the catalyst sulfided in H_2S/N_2 . The observation of MoS₃ in the catalyst sulfided in H_2S/H_2 is consistent with

TABLE 1
Formation Characteristics of MoS ₂ /TiO ₂ Catalysts Calcined and Sulfided under Various Conditions (Revealed by TEM)

Calcination atmosphere	Sulfidation atmosphere	Sulfidation temperature (K)	Max. cluster length (nm)	Ave. cluster length (nm)	Number of layers	Ave. number of layers	Orientation
Air	H ₂ S/H ₂	573		Few MoS ₂ clusters were observed. Few MoS ₂ clusters were observed.			Basal bonding
		673					Basal bonding
		773	12	5.1	1–5	2.1	Basal bonding
	H_2S/N_2	573		Few MoS ₂ clusters were observed.			Edge bonding
		673	12 (Edge)	5.7 (Edge)	3-20 (Edge)	9.3 (Edge)	Edge + basal
			20 (Basal)	8.0 (Basal)	1–5 (Basal)	2.0 (Basal)	
		773	60 (Basal)	3.5 (Edge)	3-9 (Edge)	6.3 (Edge)	Edge + basal
			,	24.9 (Basal)	1–9 (Basal)	3.0 (Basal)	C
N_2	H_2S/H_2	573		Few MoS ₂ clusters were observed.			Basal bonding
	2 2	673		Few MoS ₂ clusters were observed.		Basal bonding	
		873	40	15.5	1–10	3.2	Basal bonding
	H_2S/N_2	573	7	3	1–20	4.8	Edge bonding
	2	673	10 (Edge)	6.2 (Edge)	5–20 (Edge)	10.4 (Edge)	Edge + basal
			20 (Basal)	9.7 (Basal)	1–5 (Basal)	2.1 (Basal)	
		873	100	33.2	1–15	3.1	Basal bonding

Note. The average length and average number of MoS_2 layers were obtained by averaging all the MoS_2 layers observed in three pictures with a magnification of 1,000,000 (15 cm \times 20 cm).

previous results (32, 33) that report the formation of MoS_3 by sulfidation of the catalyst in H_2S/H_2 at low temperature. No spectra contained S (HE) from elemental sulfur; this is also consistent with previous results (27) that report the absence of the formation of elemental sulfur during the sulfiding of Mo oxide catalysts.

Based on the above discussion, sulfidation of oxide catalysts at first yielded MoS₃, which subsequently transformed

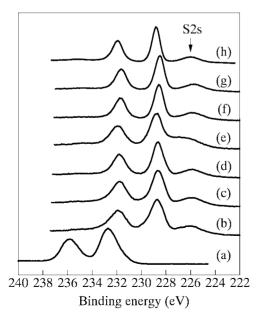


FIG. 5. Mo 3d X-ray photoelectron spectra of MoS_2/TiO_2 catalysts calcined in air (a) before sulfidation, and then after sulfidation in (b) H_2S/H_2 at 573 K, (c) H_2S/H_2 at 673 K, (d) H_2S/H_2 at 773 K, (e) H_2S/N_2 at 573 K, (f) H_2S/N_2 at 673 K, and (g) H_2S/N_2 at 773 K. (h) That of pure MoS_2 .

into MoS_2 at higher temperature. Sulfidation of the catalyst in H_2S/N_2 is more likely to maintain the amorphous MoS_3 structures at higher temperature than does sulfidation in H_2S/H_2 . Note that the exact fraction of MoS_3 is not the same as the fraction in Fig. 8, because S (LE) contains contributions from both MoS_2 and MoS_3 .

The trends observed in the S 2p spectra of MoS_2/TiO_2 catalysts calcined in N_2 (not shown here) were similar to those observed in the S 2p XPS spectra of MoS_2/TiO_2 catalysts calcined in air (Fig. 7). The line width of each feature

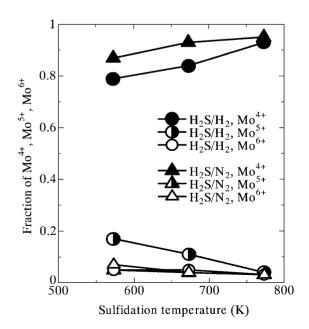


FIG. 6. Fraction of $Mo^{4+},\,Mo^{5+},\,$ and Mo^{6+} in MoS_2/TiO_2 catalysts calcined in air.

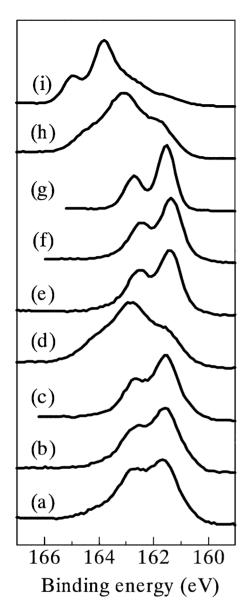


FIG. 7. S 2p X-ray photoelectron spectra of MoS₂/TiO₂ catalysts calcined in air and then sulfided in (a) H_2S/H_2 at 573 K, (b) H_2S/H_2 at 673 K, (c) H_2S/H_2 at 773 K, (d) H_2S/N_2 at 573 K, (e) H_2S/N_2 at 673 K, and (f) H_2S/N_2 at 773 K; that of (g) pure MoS₂, (h) MoS₃, and (i) elemental S.

in the spectrum for MoS_2/TiO_2 catalysts calcined in N_2 was larger than that of the corresponding feature of these catalysts calcined in air, similar to the correspondence between the Mo 3d spectra. Based on the XPS and TEM results, formation of edge-bonded MoS_2 clusters was likely related to the formation of MoS_3 during sulfidation. A short lifetime for MoS_3 during sulfidation in H_2S/H_2 presumably hindered the formation of edge-bonded MoS_2 clusters on TiO_2 . Furthermore, H_2 in H_2S/H_2 possibly led to surface hydroxyl groups on TiO_2 , which yielded basal-bonded MoS_2 clusters when sulfidation was done in H_2S/H_2 .

Figure 9 shows the effect of sulfidation conditions on the NO uptake by MoS₂/TiO₂ catalysts calcined in air. The

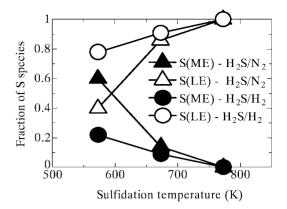


FIG. 8. Fraction of S (ME) and S (HE) in MoS_2/TiO_2 catalysts calcined in air. Closed triangle, S (ME) from MoS_3 in the catalyst sulfided by H_2S/N_2 ; open triangle, S (LE) from MoS_2 and MoS_3 in the catalyst sulfided by H_2S/N_2 ; closed circle, S (ME) from MoS_3 in the catalyst sulfided by H_2S/H_2 ; and open circle, S (LE) from MoS_2 and MoS_3 in the catalyst sulfided by H_2S/H_2 .

dispersion of MoS_2 clusters was higher in the catalyst sulfided in H_2S/H_2 than in the catalyst sulfided in H_2S/N_2 . In both sulfidation atmospheres, the dispersion decreased by increasing the sulfidation temperature. The NO/Mo values obtained for the present catalysts sulfided at 673 K (0.096 mol/mol for the catalyst sulfided in H_2S/N_2 and 0.145 mol/mol for the catalyst sulfided in H_2S/H_2) were almost the same or higher than that obtained for a laboratory-prepared Mo/Al_2O_3 catalyst sulfided at 673 K in H_2S/H_2 (0.095 mol/mol). Based on the TEM results, XPS results, and NO uptake measurements, the MoS_2 clusters in the catalysts calcined in air and sulfided in H_2S/H_2 at low temperature were highly dispersed and most were undetectable in the TEM images in Fig. 2.

The results of catalyst characterization are summarized as follows.

1. Sulfidation of the catalyst in H₂S/N₂ at the low temperature of 573 K yielded edge-bonded MoS₂ clusters. With

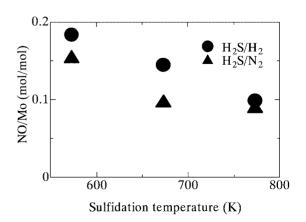


FIG. 9. NO uptake on the MoS_2/TiO_2 catalysts calcined in air and then sulfided under different atmospheres and temperatures.

increasing sulfidation temperatures, however, the edgebonded clusters transformed to highly aggregated basalbonded clusters.

- 2. Sulfidation of the catalyst in H_2S/H_2 yielded highly dispersed MoS_2 clusters. Although most of these clusters were undetectable in the TEM images, some of those that were detected showed preferential formation of basal-bonded MoS_2 clusters.
- 3. Calcination atmosphere did not affect the orientation of MoS_2 clusters on the support, either edge-bonded or basal-bonded, although calcination in air yielded higher dispersion of MoS_2 clusters after sulfidation than did calcination in N_2 .
- 4. More than 80% of the Mo oxide transformed into Mo sulfide by sulfidation at 573 K. The effect of the remaining Mo⁶⁺ species on the catalytic activity tests (discussed in the next section) can be assumed to be relatively small. The sulfided Mo species gradually aggregated with increasing sulfidation temperatures.

In a previous paper (20), we showed that edge-bonded MoS_2 clusters form on a TiO_2 support when the catalyst is calcined in N_2 and then sulfided in H_2S/N_2 . Our current results indicate that sulfiding the catalyst in H_2S/N_2 was essential for the formation of edge-bonded clusters, whereas calcining in N_2 had no effect on such formation. Instead, although calcining in N_2 resulted in the formation of aggregated structures, this aggregation could have increased the possibility of detecting the edge-bonded MoS_2 clusters in the TEM observation in our previous study.

Catalytic Activity

Figure 10 compares the hydrogenation activities of the MoS₂/TiO₂ catalysts prepared under different conditions.

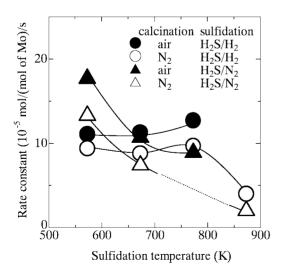


FIG. 10. Catalytic activity of MoS_2/TiO_2 catalysts calcined and sulfided under different calcination atmospheres, sulfidation atmospheres, and sulfidation temperatures.

The catalysts calcined in air showed higher activity than the corresponding catalysts calcined in N_2 . Among the catalysts sulfided in H_2S/N_2 , the catalytic activity gradually decreased with increasing sulfidation temperatures in each series of the catalysts calcined in air or N_2 . In contrast, among the catalysts sulfided in H_2S/H_2 , the catalytic activity increased with increasing sulfidation temperatures up to 773 K. The results show that the catalyst calcined in air and sulfided in H_2S/N_2 at 573 K yielded the highest activity.

Among the catalysts sulfided in H₂S/N₂, the change in the catalytic activity (Fig. 10) corresponded with that in the dispersion (Fig. 9). This indicates that catalytic activity decreased with a decrease in the number of active catalytic sites and that the turnover frequency (TOF) on the edge-bonded MoS₂ clusters was relatively independent of the dispersion. In contrast, the catalytic activity of the catalyst sulfided in H_2S/H_2 increased with increasing sulfidation temperatures, despite a decrease in the dispersion (Fig. 9). The TOF on the basal-bonded MoS₂ clusters increased with increasing sulfidation temperatures. This increase is presumably due to the decrease in the electronic interaction between the basal-bonded MoS₂ clusters and TiO₂ support, corresponding to the transformation of single-layered MoS_2 clusters to multilayered MoS_2 clusters shown in Fig. 1. This is in good agreement with the increase in the catalytic activity of Co-Mo sulfide catalysts from Co-Mo-S(I) to Co-Mo-S(II), as reported in the literature (7–12). Furthermore, the TOF on the edge-bonded MoS₂ clusters was higher than that on the basal-bonded MoS₂ clusters, because the number of active catalytic sites estimated by using the NO uptake for the edge-bonded clusters was smaller than that for the edge-bonded clusters at each sulfidation temperature (Fig. 9).

Sulfidation of the catalyst in H_2S/N_2 at a temperature higher than 673 K, however, yielded rapid aggregation of MoS_2 clusters. As a result, the activity of the catalyst sulfided in H_2S/H_2 was superior to that of the catalyst sulfided in H_2S/N_2 when the sulfidation temperature was 673 K. Edge-bonded MoS_2 clusters probably aggregate more easily than do basal-bonded MoS_2 clusters, because edgebonded clusters have weaker electronic interaction with the support.

Numerous studies have reported that the catalytic activities of TiO₂-supported MoS₂ catalysts are superior to those of Al₂O₃-supported catalysts (34–39). Consequently, numerous discussions on the possible reasons for this superiority of TiO₂-supported catalysts have been reported, although no definite conclusion has been reached. One possible reason for the superior activity is that the formation of edge-bonded MoS₂ clusters might contribute to the high activity of TiO₂-supported catalysts.

Our current results reveal, however, that edge-bonded clusters are not as stable as basal-bonded clusters. In addition, populating the edge sites of a MoS₂ cluster with Co is essential for practical preparation of catalysts. Further

studies are needed to apply the edge-bonded clusters discussed in our study to industrial catalysts.

CONCLUSION

Formation and catalytic properties of edge-bonded MoS₂ clusters on TiO₂ supports were studied. The following conclusions were obtained.

- 1. Edge-bonded MoS_2 clusters formed on TiO_2 supports by sulfiding the oxide precursor in H_2S/N_2 at low temperatures, such as 573 and 673 K. The edge-bonded MoS_2 clusters transformed to aggregated basal-bonded clusters by sulfidation at high temperatures, such as 773 K.
- 2. In the hydrogenation of 1-methylnaphthalene, edgebonded MoS_2 clusters on TiO_2 showed a higher turnover frequency than did basal-bonded MoS_2 clusters on TiO_2 .

REFERENCES

- Houalla, M., Broderick, D., deBeer, V. J. H., Gates, B. C., and Kwart, H., Preprint of Am. Chem. Soc. Div. Petroleum Chem., 22, 941 (1977).
- Katti, S. S., Westerman, D. W. B., Gates, B. C., Youngless, T., and Petrakis, L., Ind. Eng. Chem. Process Des. Dev. 23, 773 (1984).
- 3. Kabe, T., Ishihara, A., and Zang, Q., Appl. Catal. A 97, L1 (1993).
- Topsøe, H., Clausen, B. S., Candia, R., Wivel, C., and Mørup, S., J. Catal. 68, 433 (1981).
- Topsøe, H., Clausen, B. S., and Massoth, F. E., in "Hydrotreating Catalysis" (J. R. Anderson and M. Boudart, Eds.), Vol. 11, p. 162. Springer-Verlag, Berlin/Heidelberg, 1996.
- Candia, R., Sørensen, O., Villadsen, J., Topsøe, N., Clausen, B. S., and Topsøe, H., Bull. Soc. Chim. Belg. 93, 763 (1984).
- Bouwens, S. M. A. M., van Zon, F. B. M., van Dijk, M. P., van der Kraan, A. M., de Beer, V. H. J., van Veen, J. A. R., and Koningsberger, D. C., *J. Catal.* 146, 375 (1994).
- Topsøe, H., Clausen, B. S., Topsøe, N.-Y., and Zeuthen, P., Stud. Surf. Sci. Catal. 53, 77 (1990).
- 9. Ramirez, J., Fuentes, S., Diaz, G., Vrinat, M., Breysse, M., and Lacroix, M., Appl. Catal. 52, 211 (1989).
- 10. Eijsbouts, S., Appl. Catal. A 158, 53 (1997).
- Brown, V. M., Louwers, S. P. A., and Prins, R., Catal. Today 10, 345 (1991).

- Louwers, S. P. A., Craje, M. W. J., van der Kraan, A. M., Geantet, C., and Prins, R., J. Catal. 144, 579 (1993).
- Whitehurst, D. D., Isoda, T., and Mochida, I., Adv. Catal. 42, 345 (1998).
- Vrinat, M., Breysse, M., Geantet, C., Ramirez, J., and Massoth, F., Catal. Lett. 26, 25 (1994).
- 15. Daage, M., and Chianelli, R. R., J. Catal. 149, 414 (1994).
- Pratt, K. C., Sanders, J. V., and Christov, V., J. Catal. 124, 416 (1990).
- 17. Hayden, T. F., and Dumesic, J. A., J. Catal. 103, 366 (1987).
- Stockmann, R. M., Zandbergen, H. W., van Langeveld, A. D., and Moulijn, J. A., J. Mol. Catal. A 102, 147 (1995).
- 19. Sakashita, Y., and Yoneda, T., J. Catal. 185, 487 (1999).
- Sakashita, Y., Araki, Y., Honna, K., and Shimada, H., Appl. Catal. A 197, 247 (2000).
- 21. Wang, L., and Hall, K., J. Catal. 77, 232 (1982).
- Kim, D. S., Kurusu, Y., Wachs, I. E., Hardcastle, F. D., and Segawa, K., J. Catal. 120, 325 (1989).
- Weber, Th., Muijsers, J. C., and Niemantsverdriet, J. W., J. Phys. Chem. 99, 9194 (1995).
- 24. Chang, C. H., and Chan, S. S., J. Catal. 72, 139 (1981).
- 25. Eijsbouts, S., and Heinerman, J. J. L., Appl. Catal. A 105, 53 (1993).
- 26. Brinen, J. S., and Armstrong, W. D., J. Catal. **54**, 57 (1978).
- 27. Li, C. P., and Hercules, D. M., J. Phys. Chem. 88, 456 (1984).
- Makovsky, L. E., Stencel, J. M., Brown, F. R., Tischer, R. E., and Pollack, S. S., *J. Catal.* 89, 334 (1984).
- Jepsen, J. S., and Rase, H. F., Ind. Eng. Chem. Prod. Res. Dev. 20, 467 (1981).
- Jong, A. M., Borg, H. J., van Ijzendoorn, L. J., Soudant, V. G. F. M., de Beer, V. H. J., van Veen, J. A. R., and Niemantsverdriet, J. W., J. Phys. Chem. 97, 6477 (1993).
- 31. Muijsers, J. C., Weber, Th., van Hardeveld, R. M., Zandbergen, H. W., and Niemantsverdriet, J. W., J. Catal. 157, 698 (1995).
- 32. Payen, E., Kasztelan, S., Houssenbay, S., Szymanski, R., and Grimblot, J., J. Phys. Chem. 93, 6501 (1989).
- de Boer, M., van Dillen, A. J., Koningsberger, D. C., and Geus, J. W., J. Phys. Chem. 98, 7862 (1994).
- 34. Matsuda, S., and Kato, A., Appl. Catal. 8, 149 (1983).
- 35. Ng, K. Y. S., and Gulari, E., J. Catal. 95, 33 (1985).
- Shimada, H., Sato, T., Yoshimura, Y., Hiraishi, J., and Nishijima, A., J. Catal. 110, 275 (1988).
- Ramirez, J., Fuentes, S., Diaz, G., Vrinat, M., Breysse, M., and Lacroix, M., *Appl. Catal.* 52, 211 (1989).
- Okamoto, Y., Maezawa, A., and Imanaka, T., J. Catal. 120, 29 (1989).
- 39. Luck, F., Bull. Chim. Soc. Belg. 100, 781 (1991).